6 research outputs found

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    Label-efficient Contrastive Learning-based model for nuclei detection and classification in 3D Cardiovascular Immunofluorescent Images

    Full text link
    Recently, deep learning-based methods achieved promising performance in nuclei detection and classification applications. However, training deep learning-based methods requires a large amount of pixel-wise annotated data, which is time-consuming and labor-intensive, especially in 3D images. An alternative approach is to adapt weak-annotation methods, such as labeling each nucleus with a point, but this method does not extend from 2D histopathology images (for which it was originally developed) to 3D immunofluorescent images. The reason is that 3D images contain multiple channels (z-axis) for nuclei and different markers separately, which makes training using point annotations difficult. To address this challenge, we propose the Label-efficient Contrastive learning-based (LECL) model to detect and classify various types of nuclei in 3D immunofluorescent images. Previous methods use Maximum Intensity Projection (MIP) to convert immunofluorescent images with multiple slices to 2D images, which can cause signals from different z-stacks to falsely appear associated with each other. To overcome this, we devised an Extended Maximum Intensity Projection (EMIP) approach that addresses issues using MIP. Furthermore, we performed a Supervised Contrastive Learning (SCL) approach for weakly supervised settings. We conducted experiments on cardiovascular datasets and found that our proposed framework is effective and efficient in detecting and classifying various types of nuclei in 3D immunofluorescent images.Comment: 11 pages, 5 figures, MICCAI Workshop Conference 202

    Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus

    No full text
    The gold standard of histopathology for the diagnosis of Barrett’s esophagus (BE) is hindered by inter-observer variability among gastrointestinal pathologists. Deep learning-based approaches have shown promising results in the analysis of whole-slide tissue histopathology images (WSIs). We performed a comparative study to elucidate the characteristics and behaviors of different deep learning-based feature representation approaches for the WSI-based diagnosis of diseased esophageal architectures, namely, dysplastic and non-dysplastic BE. The results showed that if appropriate settings are chosen, the unsupervised feature representation approach is capable of extracting more relevant image features from WSIs to classify and locate the precursors of esophageal cancer compared to weakly supervised and fully supervised approaches

    Heart rate and gas exchange dynamic responses to multiple brief exercise bouts (MBEB) in early- and late-pubertal boys and girls.

    No full text
    Natural patterns of physical activity in youth are characterized by brief periods of exercise of varying intensity interspersed with rest. To better understand systemic physiologic response mechanisms in children and adolescents, we examined five responses [heart rate (HR), respiratory rate (RR), oxygen uptake (V̇O2 ), carbon dioxide production (V̇CO2 ), and minute ventilation (V̇E), measured breath-by-breath] to multiple brief exercise bouts (MBEB). Two groups of healthy participants (early pubertal: 17 female, 20 male; late-pubertal: 23 female, 21 male) performed five consecutive 2-min bouts of constant work rate cycle-ergometer exercise interspersed with 1-min of rest during separate sessions of low- or high-intensity (~40% or 80% peak work, respectively). For each 2-min on-transient and 1-min off-transient we calculated the average value of each cardiopulmonary exercise testing (CPET) variable (Y̅). There were significant MBEB changes in 67 of 80 on- and off-transients. Y̅ increased bout-to-bout for all CPET variables, and the magnitude of increase was greater in the high-intensity exercise. We measured the metabolic cost of MBEB, scaled to work performed, for the entire 15 min and found significantly higher V̇O2 , V̇CO2 , and V̇E costs in the early-pubertal participants for both low- and high-intensity MBEB. To reduce breath-by-breath variability in estimation of CPET variable kinetics, we time-interpolated (second-by-second), superimposed, and averaged responses. Reasonable estimates of τ (<20% coefficient of variation) were found only for on-transients of HR and V̇O2 . There was a remarkable reduction in τHR following the first exercise bout in all groups. Natural patterns of physical activity shape cardiorespiratory responses in healthy children and adolescents. Protocols that measure the effect of a previous bout on the kinetics of subsequent bouts may aid in the clinical utility of CPET
    corecore